Globe2Go, the digital newspaper replica of The Globe and Mail

Carbon conundrum

Collecting Co2 is hard enough. But what to do with it? Five companies that are making it work

Calgary

Under an electron microscope, the carbon nanofibres Carbonova produces at its lab at the University of Calgary look like tangles of ramen noodles. To the naked eye, they are a black powder, one that stands to revolutionize everything from construction materials to car parts to electronics because of an unusual combination of strength and light weight.

Carbonova’s secret lies in the science of how it produces the material from carbon dioxide and an even more potent greenhouse gas, methane, using two catalysts to trigger chemical reactions. It is the brainchild of CEO Mina Zarabian and chief technology officer Pedro Pereira Almao.

When the pair, experts in catalyst research, developed the process that spit out the material in 2016, they were elated. But celebration was tempered somewhat by skepticism among other chemical engineers, used to coke being the cheap byproduct of such a reaction, not a sought-after material used in the most advanced manufacturing, Ms. Zarabian said.

“Although it looks the same – it’s black and under analytical equipment it says it’s carbon – when you put it under a microscope, you see it’s a different type of carbon. Carbon can be formed in many different ways,” she said.

The energy-saving process and its potential have caught the attention of investors, including well-known names in Canada’s oil patch: Pat Carlson, former CEO of Seven Generations Energy Ltd., and Perpetual Energy Inc. CEO Sue Riddell Rose. Carbonova fields frequent calls from large CO2 emitters.

The real test, however, will be producing enough of the product for global markets, and at a low-enough cost, to realize its benefits.

“You can use it for so many things. The reason we cannot use it at this point is that it’s too expensive,” Dr. Pereira, who is also a professor at the university, said during a tour of the research facility. “So we’re going to make it less expensive but also available for everybody, while we reduce, considerably, the environmental impact – the process for producing carbon nanofibres.”

Carbon nanofibre is prized for strength and versatility. They are 40 times stronger than steel and a quarter of its weight. The material can be used in paints, electronic components, metal and plastics. It is also more electrically conductive than copper.

Today, global production of carbon nanofibre and nanotubes, at less than 5,000 tonnes a year, is dwarfed by carbon black, at 14 million tonnes, and standard carbon fibre, at 150,000 tonnes.

Carbonova is now scaling up, having recently completed a $2-million financing round. It is also part of a Canada-U.S.European consortium that will study the development of products for the building and automotive sectors over the next three years, on behalf of a multinational company in the construction sector looking to reduce its carbon intensity.

Its customer’s tests have yielded positive results, but it wants more volume. Now, Carbonova is building a reactor it describes as “semi-commercial’ in scale that will yield 150 times more than the bench prototype.

Once the pilot proves itself, the goal is to build modular plants at a cost of $20-million to $30-million each that can produce thousands of tonnes a year. The plants will be designed for sites where there are emissions to tap and proximity to end users of the carbon nanofibres, Ms. Zarabian said.

The founders hope to keep the company and its intellectual property in Canada, especially the West, but Ms. Zarabian is cognizant of how difficult that can be as a startup tries to scale up, a frequent worry in Canadian tech. “Business sometimes is a race,” she said.

FRONT PAGE

en-ca

2021-07-31T07:00:00.0000000Z

2021-07-31T07:00:00.0000000Z

https://globe2go.pressreader.com/article/281981790629328

Globe and Mail